Categories
Sample Handling System of Mars 2020 Perseverance Rover

Adaptive Caching Assembly of the Mars 2020 Perseverance Rover – part 2

The Mars 2020 Perseverance Rover‘s adaptive caching assembly’s stations are all made from titanium because the physical characteristics of the titanium can reduce the errors due to the temperature changes on Mars from affecting the operations during the sample caching process. The titanium caching component mounting deck is the interface between all the Mars 2020 Perseverance Rover‘s adaptive caching assembly’s stations to the rover. For the adaptive caching assembly’s station of our 1:2 Mars Rover Replica, the materials are still to be determined for the stations because the stations won’t have the actual functions, but we will try our best to also use titanium.

The Mars 2020 Perseverance Rover‘s adaptive caching assembly was designed to fit inside of the Mars 2020 Perseverance Rover‘s body before launching on Mars, but after it lands, the belly pan directly below the adaptive caching assembly is dropped from the rover’s body, because the sample handling arm in the Mars 2020 Perseverance Rover‘s adaptive caching assembly will need to extend around 200mm, or 7.87 inches below the rover’s bottom pan during the sample handling process. Besides that, the rover’s system will do a scan to make sure the sample handling arm will not be obstructed during the operation. For our Mars Rover Replica, the belly pan can also be dropped, but it can be put back as well. The dropping mechanism will be the same as the Mars 2020 Perseverance Rover‘s belly pan’s dropping mechanism.

The Mars 2020 Perseverance Rover‘s adaptive caching assembly’s bit carousel is located on the caching component mounting deck, and a part of it extends through both the top deck on the front and front panel to allow sample tubes and drill bits to exchange easily. Our Mars Rover Replica will perfectly replicate the Mars 2020 Perseverance Rover‘s adaptive caching assembly’s bit carousel.

The Mars 2020 Perseverance Rover‘s adaptive caching assembly interacts with the turret assembly, such as drill bit exchange, through the docking assembly, which located on the front of the bit carousel. There are a rotational bearing mechanism and a return spring mechanism to make sure the docking assembly will return to its original position and re-center after the turret undocks to prepare for the later operations. For our Mars Rover Replica, users can simulate a full interaction between our Mars Rover Replica‘s adaptive caching assembly and turret with the remote control.

Inside of the Mars 2020 Perseverance Rover‘s adaptive caching assembly’s bit carousel, there are 9 drill bits: 6 coring bits, 1 regolith bit, and 2 abrading bits, which are securely locked onto the bit holder. They not only need to survive the drop when the Mars 2020 Perseverance Rover touches down on Mars but also they need to not break when the rover is driving on the bumpy Martian road. Besides these, the bit carousel will need to cooperate perfectly with the corer when each time a sample tube is inserted into the drill. If misaligned, it could be disastrous for the assembly. For our Perseverance Mars Rover Replica, it is not recommended to drop it like the Mars 2020 Perseverance Rover is dropped on Mars, but our Mars Rover Replica can take a certain amount of impact.

Categories
Sample Handling System of Mars 2020 Perseverance Rover

Sample Containers of the Mars 2020 Perseverance Rover

There are two types of sample tubes on the Mars 2020 Perseverance Rover. The first type is the sample containers or the sample tubes, and the second type is the witness tubes, which are introduced in more detail in [Witness Tubes of the Mars 2020 Perseverance Rover].

There are a total of 43 sample tubes on the Mars 2020 Perseverance Rover and 5 of them will be used as witness tubes so eventually, there will be 38 sample tubes with actual samples inside. These tubes will collect, seal and store samples of Martian rock cores, and regolith (broken rocks and dust). Each Mars 2020 Perseverance Rover‘s tube will contain a sample that is carefully and scientifically selected under different and diverse environmental conditions so that it can represent as much geologic diversity as possible of the Martian field site for future analysis. For our 1:2 Perseverance Mars Rover Replica, we will perfectly replicate the appearance and the number of the sample tubes.

The Mars 2020 Perseverance Rover’s sample tubes are made of titanium. There are different coatings on the outer and internal surfaces of the sample tubes. Most of the outer coating is alumina and appears in the color white, but the top and bottom outer surfaces and the internal surface have a coating of nitrided, which appears in gold color. The purpose of the coating is for thermal control. Each of the tubes has a length of 142mm, or 5.59 inches without the seal, which will add 2mm, or 0.08 inches to the sample tube. The sample tube has a diameter of 23 mm or 0.9 inches. As for the sample tubes for our 1:2 Perseverance Mars Rover Replica, we might only use one material, but we will paint the same color as the Mars 2020 Perseverance Rover’s sample tubes.

In order to maintain the cleanness of the Mars 2020 Perseverance Rover’s sample tubes, a fluid mechanical particle barrier glove is designed and attached to each of them. About this fluid mechanical particle barrier glove, we will replicate the appearance structure for our Mars Rover Replica but it won’t actually have the function to maintain the cleanness of the Mars 2020 Perseverance Rover Replica’s sample tubes

After a sample is cashed and studied and carefully sealed, the Mars 2020 Perseverance Rover‘s sample tubes will be left on the Martian surface – a surface that is well-identified for the future sample return mission. If the Mars 2020 Perseverance Rover‘s samples are returned to Earth successfully one day, scientists can learn a great deal from them.