Categories
Sample Handling System of Mars 2020 Perseverance Rover

Adaptive Caching Assembly of the Mars 2020 Perseverance Rover – part 3

Theoretically, the Mars 2020 Perseverance Rover’s sample caching process for a rock or a regolith can be described as follows.

First of all, Mars 2020 Perseverance Rover will do an initial assessment on the sampling site by the science instruments on the rover. The Mars 2020 Perseverance Rover’s MastCam-Z will spot a potential sampling site and identify a rock for later investigation.

Secondly, the Mars 2020 Perseverance Rover’s SuperCam will exam the rock more carefully in greater detail. After SuperCam confirms that this site or this rock is worthy of caching, the Mars 2020 Perseverance Rover will move closer to the site. Then the abrading bit on the corer of the turret assembly will perform an initial abrasion so that PIXL and SHERLOC can do a close proximity analysis before the rock is decided to be a good potential caching target.

With our 1:2 Perseverance Mars Rover Replica, the users can control the rover to perform the same action as the above two steps. Although it won’t be the real scientific inspection, the movement will be the same.

Although the Mars 2020 Perseverance Rover’s PIXL and SHERLOC instruments have different functions and look for different features, in this step, they both work as the final step and a double-check for if the location is a valuable target for sample caching.

Next, the sample caching process will start. Below are the basic steps:

  1. The Mars 2020 Perseverance Rover’s sample handling arm in the adaptive caching assembly will get an empty sample tube from the sample tube assembly. The sample tube is then transferred to the Mars 2020 Perseverance Rover’s bit carousel’s interior door and inserted into a drill bit. The bit with the sample tube inside will then be transferred to the outer door, waiting for the turret’s corer to take it. Our Mars Rover Replica will perfectly replicate the sample handling arm and it will be able to perform the same action as the Mars 2020 Perseverance Rover’s sample handling arm.
  2. After the turret’s corer picks up the drill bit, the Mars 2020 Perseverance Rover’s robotic arm will start the drilling process and collect a rock core or regolith. Then the robotic arm will bring the filled sample tube back to the bit carousel, and the sample is transferred to the lower door, waiting for the Mars 2020 Perseverance Rover’s sample handling arm to move it back to the adaptive caching assembly.
  3. Different from when the sample tube is moved out of the sample tube assembly, this time, the sample tube with the rock or regolith sample will be moved to the volume assessment station, the vision assessment station, the seal dispenser, and the sealing station respectively before it is brought back to the sample tube assembly for storage.

For our Mars Rover Replica, although you will see how the turret and the tools on it interact with the bit carousel, you might not see the interactions between the tubes and the stations because it will be done inside of the rover’s body. But we will still try our best to replicate the stations and the ability to move for our Mars Rover Replica just like the real Mars 2020 Perseverance Rover’s actions. If you are interested in our Mars Rover Replica, you can check out [1:2 Perseverance Mars Rover Replica Design and Building Diary].

Ideally, these tubes will be dropped to a pre-decided location for the future retrieving mission and returning to Earth.